4.2 Model Linear Stationary untuk Seri Waktu dimana variabel acak disebut inovasi karena merupakan bagian dari variabel teramati yang tidak dapat diprediksi mengingat nilai masa lalu. Model umum (4.4) mengasumsikan bahwa adalah keluaran dari filter linier yang mengubah inovasi masa lalu, yaitu proses linier. Asumsi linearitas ini didasarkan pada teorema dekomposisi Wolds (Wold 1938) yang mengatakan bahwa setiap proses kovarian diskrit diskrit dapat dinyatakan sebagai jumlah dari dua proses yang tidak berkorelasi, di mana hanya deterministik murni dan merupakan proses indeterministik murni yang dapat ditulis sebagai garis lurus Jumlah proses inovasi: di mana urutan variabel acak tidak berkorelasi serentak dengan mean nol dan varians umum. Kondisi ini diperlukan untuk stationarity. Formulasi (4.4) adalah reparametrizasi terbatas dari representasi tak terbatas (4.5) - (4.6) dengan konstan. Biasanya ditulis dalam istilah operator lag yang didefinisikan oleh, yang memberikan ekspresi pendek: di mana polinomial operator lag dan disebut polinomial dan polinomialnya masing-masing. Untuk menghindari redundansi parameter, kami berasumsi bahwa tidak ada faktor umum antara komponen dan komponen. Selanjutnya, kita akan mempelajari plot dari beberapa seri waktu yang dihasilkan oleh model stasioner dengan tujuan untuk menentukan pola utama evolusi temporal mereka. Gambar 4.2 mencakup dua seri yang dihasilkan dari proses stasioner berikut yang dihitung dengan menggunakan kuantum genarma: Gambar 4.2: Seri waktu yang dihasilkan oleh model Seperti yang diharapkan, kedua deret waktu bergerak di sekitar tingkat konstan tanpa perubahan varians karena properti stasioner. Selain itu, tingkat ini mendekati rata-rata teoritis proses,, dan jarak masing-masing titik ke nilai ini sangat jarang berada di luar batas. Selanjutnya, evolusi rangkaian menunjukkan keberangkatan lokal dari mean proses, yang dikenal sebagai perilaku pengembalian rata-rata yang menjadi ciri rangkaian waktu stasioner. Mari kita pelajari dengan beberapa detail sifat dari berbagai proses, khususnya, fungsi autocovariance yang menangkap sifat dinamis dari proses stasioner stochastic. Fungsi ini bergantung pada satuan ukuran, sehingga ukuran biasa dari derajat linearitas antar variabel adalah koefisien korelasi. Dalam kasus proses stasioner, koefisien autokorelasi pada lag, dilambangkan dengan, didefinisikan sebagai korelasi antara dan: Dengan demikian, fungsi autokorelasi (ACF) adalah fungsi autokovarian yang dipratitasir dengan varians. Sifat ACF adalah: Dengan adanya properti simetri (4.10), ACF biasanya diwakili dengan grafik batang pada kelambatan nonnegatif yang disebut correlogram sederhana. Alat lain yang berguna untuk menggambarkan dinamika proses stasioner adalah fungsi autokorelasi parsial (PACF). Koefisien autokorelasi parsial pada lag mengukur hubungan linier antara dan disesuaikan dengan efek nilai intermediate. Oleh karena itu, hanya koefisien dalam model regresi linier: Sifat-sifat PACF setara dengan yang dimiliki ACF (4.8) - (4.10) dan mudah untuk membuktikannya (Kotak dan Jenkins 1976). Seperti ACF, fungsi autokorelasi parsial tidak bergantung pada satuan ukuran dan diwakili dengan grafik batang pada kelambatan nonnegatif yang disebut correlogram parsial. Sifat dinamik dari setiap model stasioner menentukan bentuk korelogram tertentu. Selain itu, dapat ditunjukkan bahwa, untuk setiap proses stasioner, kedua fungsi, ACF dan PACF, mendekati nol karena lag cenderung tidak terbatas. Model tidak selalu proses stasioner, jadi pertama-tama perlu ditentukan kondisi stasionerasinya. Ada subclass model yang memiliki sifat khusus sehingga kita akan mempelajarinya secara terpisah. Jadi, kapan dan, ini adalah proses white noise. Kapan, itu adalah proses rata-rata murni bergerak order. , Dan saat itu adalah proses pemesanan autoregresif murni. . 4.2.1 Proses Kebisingan Putih Model yang paling sederhana adalah proses white noise, di mana urutan variabel nol tidak berkorelasi nol dengan varians konstan. Hal ini dilambangkan dengan. Proses ini diam jika variansnya terbatas,, karena mengingat bahwa: memverifikasi kondisi (4.1) - (4.3). Selain itu, tidak berkorelasi dari waktu ke waktu, fungsi autocovariance-nya adalah: Gambar 4.7 menunjukkan dua seri waktu simulasi yang dihasilkan dari proses dengan mean nol dan parameter dan -0,7. Parameter autoregresif mengukur ketekunan peristiwa masa lalu ke nilai saat ini. Misalnya, jika, kejutan positif (atau negatif) mempengaruhi positif (atau negatif) untuk jangka waktu yang lebih lama maka nilai lebih besar. Bila, seri bergerak lebih kasar sekitar rata-rata karena alternasi arah pengaruh, yaitu kejutan yang mempengaruhi secara positif pada saat ini, memiliki efek negatif terhadap, positif masuk. Prosesnya selalu dapat dibalik dan bersifat stasioner ketika parameter model dibatasi untuk berada di wilayah tersebut. Untuk membuktikan kondisi stasioner, pertama kita menulis dalam bentuk rata-rata bergerak dengan substitusi rekursif pada (4.14): Gambar 4.8: Korelasi populasi untuk proses Yaitu, adalah jumlah tertimbang dari inovasi masa lalu. Bobot bergantung pada nilai parameter: kapan, (atau), pengaruh inovasi yang diberikan meningkat (atau menurun) sepanjang waktu. Mengambil harapan untuk (4.15) untuk menghitung mean proses, kita mendapatkan: Mengingat bahwa, hasilnya adalah jumlah dari istilah tak terbatas yang konvergen untuk semua nilai hanya jika, dalam hal ini. Masalah serupa muncul saat kita menghitung momen kedua. Buktinya bisa disederhanakan dengan asumsi itu, yaitu,. Kemudian, variansnya adalah: Sekali lagi, variansnya mencapai tak terbatas kecuali, dalam hal ini. Mudah untuk memverifikasi bahwa rata-rata dan variansnya meledak saat kondisi itu tidak terjadi. Fungsi autocovariance dari proses stasioner Oleh karena itu, fungsi autokorelasi untuk model stasioner adalah: Yaitu, correlogram menunjukkan peluruhan eksponensial dengan nilai positif selalu jika positif dan dengan osilasi positif negatif jika negatif (lihat gambar 4.8). Selanjutnya, laju peluruhan menurun seiring kenaikan, sehingga semakin besar nilai korelasi dinamis yang semakin kuat dalam prosesnya. Akhirnya, ada cutoff dalam fungsi autokorelasi parsial pada lag pertama. Gambar 4.9: Korelasi Populasi untuk Proses Dapat ditunjukkan bahwa proses umum (Kotak dan Jenkins 1976): Adalah stasioner hanya jika akar dari persamaan karakteristik polinomial berada di luar lingkaran unit. Mean dari model stasioner adalah. Apakah selalu dapat dibalik untuk setiap nilai parameter. ACF akan menjadi nol secara eksponensial bila akarnya benar-benar atau dengan fluktuasi gelombang sinus-kosinus saat mereka kompleks. PACF memiliki cutoff pada lag, yaitu, beberapa contoh. Correlogram untuk model yang lebih kompleks, seperti, dapat dilihat pada gambar 4.9. Mereka sangat mirip dengan pola ketika proses berakar nyata, namun mengambil bentuk yang sangat berbeda saat akarnya sangat kompleks (lihat grafik grafis pertama pada gambar 4.9). 4.2.4 Model Rata-rata Bergerak Autoregresif Model pesanan rata-rata bergerak autoregresif umum (berurutan) secara otomatis, adalah: Pengenalan Singkat terhadap Seri Waktu Modern Definisi Suatu deret waktu adalah fungsi acak xt dari sebuah argumen t pada himpunan T. In Kata lain, deret waktu adalah keluarga dengan variabel acak. X t-1 X t. X t1. Sesuai dengan semua elemen di himpunan T, di mana T seharusnya merupakan rangkaian tak terhitung dan tak terbatas. Definisi Suatu deret waktu yang teramati t t e T o T dianggap sebagai bagian dari satu realisasi fungsi acak x t. Satu set kemungkinan realisasi yang mungkin teramati disebut ansambel. Untuk menempatkan hal-hal lebih ketat, deret waktu (atau fungsi acak) adalah fungsi nyata x (w, t) dari dua variabel w dan t, di mana wW dan t T. Jika kita memperbaiki nilai w. Kita memiliki fungsi nyata x (t w) dari waktu t, yang merupakan realisasi deret waktu. Jika kita memperbaiki nilai t, maka kita memiliki variabel acak x (w t). Untuk suatu titik waktu tertentu ada distribusi probabilitas lebih dari x. Jadi fungsi acak x (w, t) dapat dianggap sebagai salah satu keluarga variabel acak atau sebagai keluarga realisasi. Definisi Kita mendefinisikan fungsi distribusi dari variabel acak dengan t 0 sebagai P o) x (x). Demikian pula kita dapat mendefinisikan distribusi bersama untuk n variabel acak Poin-poin yang membedakan analisis deret waktu dari analisis statistik biasa adalah sebagai berikut (1) Ketergantungan di antara pengamatan pada titik kronologis yang berbeda pada waktunya memainkan peran penting. Dengan kata lain, urutan pengamatan itu penting. Dalam analisis statistik biasa diasumsikan bahwa pengamatan saling terkait satu sama lain. (2) Domain t tidak terbatas. (3) Kita harus membuat kesimpulan dari satu realisasi. Realisasi variabel acak dapat diamati hanya sekali pada setiap titik waktu. Dalam analisis multivariat kita memiliki banyak pengamatan terhadap sejumlah variabel yang terbatas. Perbedaan kritis ini mengharuskan asumsi adanya stasioneritas. Definisi Fungsi acak x t dikatakan benar-benar stasioner jika semua fungsi distribusi berdimensi hingga yang menentukan x t tetap sama bahkan jika keseluruhan kelompok titik t 1. T 2. T n bergeser sepanjang sumbu waktu. Artinya, jika untuk bilangan bulat t 1. T 2. T n dan k. Secara grafis, seseorang dapat membayangkan realisasi dari rangkaian stasioner yang ketat karena tidak hanya memiliki tingkat yang sama dalam dua interval yang berbeda, namun juga fungsi distribusi yang sama, hingga parameter yang menentukannya. Asumsi stasioneritas membuat hidup kita lebih sederhana dan lebih murah. Tanpa stasioneritas, kita harus sering mencicipi proses ini pada setiap titik waktu untuk membangun karakterisasi fungsi distribusi dalam definisi sebelumnya. Stationarity berarti bahwa kita dapat membatasi perhatian kita pada beberapa fungsi numerik yang paling sederhana, yaitu saat-saat distribusi. Saat-saat sentral diberikan oleh Definisi (i) Nilai rata-rata dari deret waktu t adalah momen orde pertama. (Ii) Fungsi autocovariance dari t adalah momen kedua tentang mean. Jika ts maka Anda memiliki varians dari x t. Kita akan menggunakan untuk menunjukkan autocovariance dari rangkaian stasioner, di mana k menunjukkan perbedaan antara t dan s. (Iii) Fungsi autokorelasi (ACF) dari t adalah Kita akan menggunakan untuk menunjukkan autokorelasi dari rangkaian stasioner, di mana k menunjukkan perbedaan antara t dan s. (Iv) autokorelasi parsial (PACF). F kk Adalah korelasi antara z t dan z tk setelah menghilangkan ketergantungan linier mereka pada variabel intervening z t1. Z t2 Z tk-1 Salah satu cara sederhana untuk menghitung autokorelasi parsial antara z t dan z tk adalah dengan menjalankan dua regresi kemudian menghitung korelasi antara dua vektor residual. Atau, setelah mengukur variabel sebagai penyimpangan dari meannya, autokorelasi parsial dapat ditemukan sebagai koefisien regresi LS pada z t pada model dimana titik di atas variabel menunjukkan bahwa ia diukur sebagai deviasi dari meannya. (V) Persamaan Yule-Walker memberikan hubungan penting antara autokorelasi parsial dan autokorelasi. Kalikan kedua sisi persamaan 10 dengan z tk-j dan ambillah ekspektasi. Operasi ini memberi kita persamaan perbedaan berikut dalam autocovariances atau, dalam hal autokorelasi Representasi yang tampaknya sederhana ini benar-benar merupakan hasil yang hebat. Yaitu untuk j1,2. K kita dapat menulis sistem persamaan lengkap, yang dikenal sebagai persamaan Yule-Walker, Dari aljabar linier Anda tahu bahwa matriks r adalah pangkat penuh. Oleh karena itu dimungkinkan untuk menerapkan aturan Cramser berturut-turut untuk k1,2. Untuk memecahkan sistem autokorelasi parsial. Tiga yang pertama adalah Kami memiliki tiga hasil penting pada seri stasioner yang ketat. Implikasinya adalah kita bisa menggunakan realisasi berurutan dari urutan untuk memperkirakan mean. Kedua. Jika t benar-benar stasioner dan E t 2 lt maka Implikasinya adalah bahwa autocovariance hanya bergantung pada perbedaan antara t dan s, bukan kronologis mereka pada waktunya. Kita bisa menggunakan sepasang interval dalam perhitungan autocovariance selama waktu di antara keduanya konstan. Dan kita bisa menggunakan realisasi data yang terbatas untuk memperkirakan autocovariances. Ketiga, fungsi autokorelasi dalam hal stasioneritas ketat diberikan oleh Implikasinya adalah bahwa autokorelasi hanya bergantung pada selisih antara t dan s juga, dan sekali lagi dapat diperkirakan dengan realisasi data yang terbatas. Jika tujuan kami adalah untuk memperkirakan parameter yang deskriptif tentang kemungkinan realisasi dari deret waktu, maka mungkin stasioner ketat terlalu ketat. Misalnya, jika mean dan kovarians dari x t konstan dan tidak bergantung pada titik kronologisnya, maka mungkin tidak penting bagi kita bahwa fungsi distribusi sama untuk interval waktu yang berbeda. Definisi Fungsi acak bersifat stasioner dalam arti luas (atau lemah stasioner, atau stasioner dalam pengertian Khinchin, atau stasioner kovarian) jika m 1 (t) m dan m 11 (t, s). Strukturalitas yang ketat tidak dengan sendirinya menyiratkan stasioneritas yang lemah. Lemahnya stasioneritas tidak menyiratkan stasioneritas yang ketat. Strukturalitas yang ketat dengan E t 2 ini berarti lemahnya stasioneritas. Teorema ergodik berkaitan dengan pertanyaan tentang kondisi yang diperlukan dan cukup untuk membuat kesimpulan dari satu realisasi deret waktu. Pada dasarnya, ini bermuara pada asumsi lemahnya stasioneritas. Teorema Jika t lemah stasioner dengan mean m dan fungsi kovariansi, maka untuk itu, untuk setiap gt 0 dan h gt 0 ada beberapa nomor T o sehingga untuk semua T gt T o. Jika dan hanya jika kondisi yang diperlukan dan memadai ini adalah bahwa autocovariances mati, dalam hal ini mean sampel adalah estimator yang konsisten untuk mean populasi. Konsekuensi Jika t lemah dengan E tk xt 2 lt untuk setiap t, dan E tk xtx tsk x ts tidak bergantung pada t untuk bilangan bulat apapun, maka jika dan hanya jika jika Konsekuensi dari konsekuensi sebenarnya adalah asumsi bahwa xtx tk adalah Lemah stasioner Teorema Ergodik tidak lebih dari sebuah hukum dalam jumlah besar bila pengamatannya berkorelasi. Orang mungkin bertanya pada saat ini tentang implikasi praktis dari stasioneritas. Penerapan teknik time series yang paling umum adalah pemodelan data makroekonomi, baik teori maupun atheoretik. Sebagai contoh yang pertama, seseorang mungkin memiliki model multiplier-accelerator. Agar model menjadi stasioner, parameter harus memiliki nilai tertentu. Uji model ini kemudian mengumpulkan data yang relevan dan memperkirakan parameternya. Jika perkiraan tidak sesuai dengan stasioneritas, maka seseorang harus memikirkan kembali model teoretis atau model statistik, atau keduanya. Kami sekarang memiliki mesin yang cukup untuk mulai berbicara tentang pemodelan data rangkaian waktu univariat. Ada empat langkah dalam prosesnya. 1. membangun model dari teori dan pengalaman pengetahuan 2. mengidentifikasi model berdasarkan data (seri yang diamati) 3. menyesuaikan model (memperkirakan parameter model) 4. memeriksa model Jika pada langkah keempat kita tidak Puas kita kembali ke langkah pertama. Proses ini berulang sampai pemeriksaan lebih lanjut dan penilaian tidak menghasilkan perbaikan lebih lanjut dalam hasil. Diagramatik Definisi Beberapa operasi sederhana meliputi: Operator backshift Bx tx t-1 Operator depan Fx tx t1 Operator perbedaan 1 - B xtxt - x t-1 Operator perbedaan berperilaku dengan mode yang konsisten dengan konstanta dalam deret tak terbatas. . Artinya, kebalikannya adalah batas jumlah tak terbatas. Yaitu, -1 (1-B) -1 1 (1-B) 1BB 2. Operator gabungan S -1 Karena kebalikan dari operator perbedaan, operator gabungan berfungsi untuk menyusun penjumlahan. BANGUNAN MODEL Pada bagian ini kami menawarkan tinjauan singkat tentang model deret waktu yang paling umum. Berdasarkan pengetahuan tentang proses penghasil data, seseorang memilih kelas model untuk identifikasi dan estimasi dari kemungkinan yang mengikutinya. Definisi Misalkan Ex t m independen dari t. Model seperti dengan karakteristik disebut model autoregresif dari urutan p, AR (p). Definisi Jika variabel dependen waktu (proses stokastik) t memenuhi maka t dikatakan memuaskan properti Markov. Pada LHS, harapan dikondisikan pada sejarah tak terbatas x t. Di RHS itu dikondisikan hanya pada sebagian dari sejarah. Dari definisi tersebut, model AR (p) terlihat memuaskan properti Markov. Dengan menggunakan operator backshift kita dapat menulis model AR kita sebagai Teorema Suatu kondisi yang diperlukan dan cukup untuk model AR (p) menjadi stasioner adalah bahwa semua akar polinomial berada di luar lingkaran unit. Contoh 1 Perhatikan AR (1) Akar satunya dari 1 - f 1 B 0 adalah B 1 f 1. Kondisi untuk stationarity mensyaratkan hal itu. Jika kemudian seri yang diamati akan nampak sangat hingar bingar. Misalnya. Pertimbangkan di mana istilah white noise memiliki distribusi normal dengan mean nol dan varians dari satu. Hasil observasi beralih dengan hampir setiap pengamatan. Jika, di sisi lain, maka seri yang diamati akan jauh lebih mulus. Pada seri ini observasi cenderung berada di atas 0 jika pendahulunya berada di atas nol. Perbedaan dari e t adalah s e 2 untuk semua t. Perbedaan dari x t. Bila sudah nol berarti, diberikan oleh Karena seri itu stasioner kita bisa menulis. Oleh karena itu, fungsi autocovariance dari rangkaian AR (1) adalah, seandainya tanpa kehilangan generalitas m 0 Untuk melihat seperti apa parameter AR ini, kita akan menggunakan fakta bahwa kita dapat menulis xt sebagai berikut Mengalikan dengan x Tk dan mengambil ekspektasi Perhatikan bahwa autocovariances mati saat k tumbuh. Fungsi autokorelasi adalah autocovariance dibagi dengan varians istilah white noise. Atau, . Dengan menggunakan formula Yule-Walker sebelumnya untuk autokorelasi parsial yang kita miliki Untuk AR (1) autokorelasi mati secara eksponensial dan autokorelasi parsial menunjukkan lonjakan pada satu lag dan nol setelahnya. Contoh 2 Perhatikan AR (2) Polinomial yang terkait pada operator lag adalah Akar dapat ditemukan dengan menggunakan rumus kuadrat. Akarnya adalah Ketika akar itu nyata dan akibatnya seri akan menurun secara eksponensial sebagai respons terhadap kejutan. Bila akarnya sangat rumit dan deretnya akan muncul sebagai gelombang tanda teredam. Teorema stasioneritas membebankan kondisi berikut pada koefisien AR Autocovariance untuk proses AR (2), dengan mean nol, Membagi melalui varians xt memberikan fungsi autokorelasi Karena kita dapat menulis serupa untuk autokorelasi kedua dan ketiga Yang lain Autokorelasi dipecahkan secara rekursif. Pola mereka diatur oleh akar persamaan diferensial linier orde kedua Jika akarnya nyata maka autokorelasi akan menurun secara eksponensial. Bila akarnya rumit, autokorelasi akan muncul sebagai gelombang sinus yang teredam. Dengan menggunakan persamaan Yule-Walker, autokorelasi parsial adalah Sekali lagi, autokorelasi mati perlahan. Autokorelasi parsial di sisi lain cukup khas. Ini memiliki lonjakan pada satu dan dua kelambatan dan nol setelahnya. Teorema Jika x t adalah proses AR (p) stasioner maka dapat dituliskan secara ekivalen sebagai model filter linier. Artinya, polinom di operator backshift bisa terbalik dan AR (p) ditulis sebagai moving average dari pesanan tak terbatas. Contoh Misalkan z t adalah proses AR (1) dengan mean nol. Apa yang benar untuk periode sekarang juga harus benar untuk periode sebelumnya. Jadi dengan substitusi rekursif kita dapat menulis Square kedua sisi dan mengambil ekspektasi sisi kanan lenyap seperti k karena f lt 1. Oleh karena itu jumlah konvergen ke z t dalam mean kuadrat. Kita bisa menulis ulang model AR (p) sebagai filter linier yang kita tahu bersifat stasioner. Fungsi Autokorelasi dan Autokorelasi Parsial Umumnya Misalkan rangkaian stasioner z t dengan mean nol diketahui bersifat autoregresif. Fungsi autokorelasi AR (p) ditemukan dengan mengambil harapan dan membagi melalui variansi z t Ini memberi tahu kita bahwa r k adalah kombinasi linear dari autokorelasi sebelumnya. Kita bisa menggunakan ini dalam menerapkan aturan Cramster untuk (i) dalam pemecahan untuk fkk. Secara khusus kita dapat melihat bahwa ketergantungan linier ini akan menyebabkan f kk 0 untuk k gt p. Fitur unik dari seri autoregressive ini akan sangat berguna ketika menyangkut identifikasi seri yang tidak diketahui. Jika Anda memiliki MathCAD atau MathCAD Explorer maka Anda dapat melakukan eksperimen interactivley dengan beberapa ide AR (p) yang disajikan di sini. Model Bergerak Rata-rata Perhatikan model dinamis di mana rangkaian minat bergantung hanya pada beberapa bagian dari sejarah istilah white noise. Secara diagram ini mungkin digambarkan sebagai Definisi Misalkan t adalah urutan yang tidak berkorelasi dari i. i.d. Variabel acak dengan mean nol dan varians terbatas. Kemudian proses rata-rata order bergerak q, MA (q), diberikan oleh Teorema: Suatu proses rata-rata bergerak selalu stasioner. Bukti: Daripada memulai dengan bukti umum, kita akan melakukannya untuk kasus tertentu. Misalkan z t adalah MA (1). Kemudian . Tentu saja, t memiliki mean nol dan varian terbatas. Rata-rata z t selalu nol. Autocovariances akan diberikan oleh Anda dapat melihat bahwa mean dari variabel acak tidak bergantung pada waktu dengan cara apapun. Anda juga bisa melihat bahwa autocovariance hanya bergantung pada offset s, bukan di tempat di seri yang kita mulai. Kita bisa membuktikan hasil yang sama lebih umum dengan memulai dengan, yang memiliki representasi rata-rata pergerakan alternatif. Pertimbangkan dulu varians dari z t. Dengan substitusi rekursif Anda dapat menunjukkan bahwa ini sama dengan jumlah yang kita ketahui sebagai rangkaian konvergen sehingga variansnya terbatas dan tidak tergantung waktu. Kovarians adalah, misalnya, Anda juga dapat melihat bahwa kovarian otomatis hanya bergantung pada titik relatif pada waktunya, bukan pada kronologis waktu. Kesimpulan kami dari semua ini adalah bahwa proses MA () tidak bergerak. Untuk general MA (q) proses fungsi autokorelasi diberikan oleh fungsi autokorelasi parsial akan mati dengan lancar. Anda dapat melihat ini dengan membalik proses untuk mendapatkan proses AR (). Jika Anda memiliki MathCAD atau MathCAD Explorer maka Anda dapat melakukan eksperimen secara interaktif dengan beberapa gagasan MA (q) yang disajikan di sini. Mixed Autoregressive - Moving Average Models Definition Misalkan t adalah urutan yang tidak berkorelasi dari i. i.d. Variabel acak dengan mean nol dan varians terbatas. Kemudian proses order rata-rata autoregresif, bergerak rata-rata (p, q), ARMA (p, q), yang diberikan oleh Akar operator autoregresif semuanya berada di luar lingkaran unit. Jumlah yang tidak diketahui adalah pq2. P dan q sudah jelas. 2 meliputi tingkat proses, m. Dan varians istilah white noise, sa 2. Misalkan kita menggabungkan representasi AR dan MA kita sehingga model dan koefisien dinormalisasi sehingga bo 1. Maka representasi ini disebut ARMA (p, q) jika Akar (1) semua terletak di luar lingkaran unit. Anggaplah bahwa y t diukur sebagai penyimpangan dari mean sehingga kita bisa menjatuhkan o. Maka fungsi autocovariance diturunkan dari jika jgtq maka istilah MA drop out dengan harapan memberi. Artinya, fungsi autocovariance terlihat seperti AR biasa untuk kelambatan setelah q mereka mati dengan lancar setelah q, tapi kita tidak bisa mengatakan bagaimana 1,2,133, Q akan terlihat Kita juga bisa memeriksa PACF untuk kelas model ini. Model dapat ditulis sebagai Kita dapat menulis ini sebagai proses MA (inf) yang menunjukkan bahwa PACF mati dengan perlahan. Dengan beberapa aritmatika, kita dapat menunjukkan bahwa ini terjadi hanya setelah lonjakan p pertama disumbangkan oleh bagian AR. Hukum Empiris Sebenarnya, rangkaian waktu stasioner dapat ditunjukkan oleh p 2 dan q 2. Jika bisnis Anda memberikan perkiraan yang baik terhadap kenyataan dan kebaikan yang sesuai adalah kriteria Anda maka model yang hilang lebih disukai. Jika minat Anda adalah efisiensi prediktif maka model pelit itu lebih diutamakan. Bereksperimenlah dengan gagasan ARMA yang disajikan di atas dengan lembar kerja MathCAD. Autoregressive Mengintegrasikan Model Bergerak Rata-rata Filter MA filter AR Mengintegrasikan filter Terkadang proses, atau rangkaian, kita mencoba untuk model tidak diam di tingkat. Tapi itu mungkin diam di, katakanlah, perbedaan pertama. Artinya, dalam bentuk aslinya, autocovariances untuk serial ini mungkin tidak terlepas dari titik kronologisnya pada waktunya. Namun, jika kita membangun seri baru yang merupakan perbedaan pertama dari seri aslinya, seri baru ini memenuhi definisi stasioneritas. Hal ini sering terjadi pada data ekonomi yang sangat cenderung. Definisi Misalkan z t tidak stasioner, tapi z t - z t-1 memenuhi definisi stasioneritas. Juga, pada, istilah white noise memiliki mean dan varian yang terbatas. Kita bisa menulis model seperti ini dinamakan model ARIMA (p, d, q). P mengidentifikasi urutan operator AR, d mengidentifikasi daya. Q mengidentifikasi urutan operator MA. Jika akar f (B) berada di luar lingkaran satuan maka kita dapat menulis ulang ARIMA (p, d, q) sebagai filter linier. Yaitu. Itu bisa ditulis sebagai MA (). Kami menyimpan diskusi tentang pendeteksian akar unit untuk bagian lain dari catatan kuliah. Perhatikan sebuah sistem dinamis dengan x t sebagai rangkaian input dan y sebagai output series. Secara diagram kita memiliki Model-model ini adalah analogi diskrit dari persamaan diferensial linier. Kita menganggap hubungan berikut dimana b menunjukkan penundaan murni. Ingat itu (1-B). Dengan membuat substitusi ini model dapat dituliskan Jika koefisien polinomial pada y t dapat terbalik maka model dapat dituliskan sebagai V (B) dikenal sebagai fungsi respon impuls. Kita akan menemukan terminologi ini lagi dalam pembahasan vektor autoregresif kita nanti. Kointegrasi dan koreksi kesalahan model. IDENTIFIKASI MODEL Setelah memutuskan kelas model, seseorang harus mengidentifikasi urutan proses yang menghasilkan data. Artinya, seseorang harus membuat tebakan terbaik mengenai urutan proses AR dan MA yang mengemudikan seri stasioner. Seri stasioner benar-benar dicirikan oleh mean dan autocovariances-nya. Untuk alasan analitis, biasanya kita bekerja dengan autokorelasi dan autokorelasi parsial. Dua alat dasar ini memiliki pola unik untuk proses AR dan MA stasioner. Seseorang dapat menghitung perkiraan sampel autokorelasi dan fungsi autokorelasi parsial dan membandingkannya dengan hasil tabulasi untuk model standar. Contoh Autocovariance Function Contoh Fungsi Autokorelasi Autokorelasi parsial sampel akan Menggunakan autokorelasi dan autokorelasi parsial cukup sederhana secara prinsip. Misalkan kita memiliki seri z t. Dengan mean nol, yaitu AR (1). Jika kita menjalankan regresi z t2 pada z t1 dan z t kita akan berharap untuk menemukan bahwa koefisien pada z t tidak berbeda dari nol karena autokorelasi parsial ini seharusnya nol. Di sisi lain, autokorelasi untuk seri ini seharusnya menurun secara eksponensial untuk meningkatkan kelambatan (lihat contoh AR (1) di atas). Misalkan seri itu benar-benar bergerak rata-rata. Autokorelasi harus nol di mana-mana tapi pada lag pertama. Autokorelasi parsial harus mati secara eksponensial. Bahkan dari kegilaan kita yang sekilas melalui dasar analisis deret waktu, jelaslah bahwa ada dualitas antara proses AR dan MA. Dualitas ini dapat dirangkum dalam tabel berikut.2.1 Model Bergerak Rata-Rata (model MA) Model rangkaian waktu yang dikenal sebagai model ARIMA dapat mencakup istilah autoregresif dan atau istilah rata-rata bergerak. Dalam Minggu 1, kita belajar istilah autoregressive dalam model time series untuk variabel x t adalah nilai lag dari x t. Misalnya, istilah autoregressive lag 1 adalah x t-1 (dikalikan dengan koefisien). Pelajaran ini mendefinisikan istilah rata-rata bergerak. Istilah rata-rata bergerak dalam model deret waktu adalah kesalahan masa lalu (dikalikan dengan koefisien). Misalkan (wt overset N (0, sigma2w)), yang berarti bahwa w t identik, didistribusikan secara independen, masing-masing dengan distribusi normal memiliki mean 0 dan varian yang sama. Model rata-rata bergerak urutan 1, dilambangkan dengan MA (1) adalah (xt mu wt theta1w) Model rata-rata bergerak urutan 2, yang dinotasikan dengan MA (2) adalah (xt mu wt theta1w theta2w) Model rata-rata pergerakan harga th q th , Dilambangkan dengan MA (q) adalah (xt mu wt theta1w theta2w titik thetaqw) Catatan. Banyak buku teks dan program perangkat lunak menentukan model dengan tanda negatif sebelum persyaratan. Ini tidak mengubah sifat teoritis umum dari model, meskipun ia membalik tanda aljabar dari nilai koefisien perkiraan dan (unsquared) terms dalam formula untuk ACF dan varians. Anda perlu memeriksa perangkat lunak Anda untuk memverifikasi apakah tanda negatif atau positif telah digunakan untuk menuliskan model perkiraan dengan benar. R menggunakan tanda-tanda positif pada model dasarnya, seperti yang kita lakukan di sini. Sifat Teoritis dari Seri Waktu dengan Model MA (1) Perhatikan bahwa satu-satunya nilai nol di dalam teoritis ACF adalah untuk lag 1. Semua autokorelasi lainnya adalah 0. Jadi sampel ACF dengan autokorelasi signifikan hanya pada lag 1 adalah indikator dari model MA (1) yang mungkin. Bagi siswa yang tertarik, bukti sifat ini adalah lampiran untuk handout ini. Contoh 1 Misalkan model MA (1) adalah x t 10 w t .7 w t-1. Dimana (wt overset N (0,1)). Dengan demikian koefisiennya 1 0,7. ACF teoritis diberikan oleh sebidang ACF berikut. Plot yang baru saja ditunjukkan adalah ACF teoritis untuk MA (1) dengan 1 0,7. Dalam prakteknya, contoh biasanya akan memberikan pola yang jelas. Dengan menggunakan R, kita mensimulasikan n 100 nilai sampel menggunakan model x t 10 w t .7 w t-1 dimana w t iid N (0,1). Untuk simulasi ini, rangkaian time series dari data sampel berikut. Kami tidak tahu banyak dari plot ini. Contoh ACF untuk data simulasi berikut. Kita melihat lonjakan pada lag 1 diikuti oleh nilai-nilai yang tidak signifikan secara umum untuk kelambatan masa lalu 1. Perhatikan bahwa sampel ACF tidak sesuai dengan pola teoritis dari MA yang mendasarinya (1), yaitu bahwa semua autokorelasi untuk kelambatan masa lalu 1 akan menjadi 0 Sampel yang berbeda akan memiliki sampel ACF yang sedikit berbeda yang ditunjukkan di bawah, namun kemungkinan memiliki fitur luas yang sama. Sifat Teori dari Seri Waktu dengan Model MA (2) Untuk model MA (2), sifat teoretis adalah sebagai berikut: Perhatikan bahwa satu-satunya nilai nol pada ACF teoritis adalah untuk lags 1 dan 2. Autokorelasi untuk kelambatan yang lebih tinggi adalah 0 Jadi, sampel ACF dengan autokorelasi signifikan pada kelambatan 1 dan 2, namun autokorelasi yang tidak signifikan untuk kelambatan yang lebih tinggi mengindikasikan model MA (2) yang mungkin. Iid N (0,1). Koefisiennya adalah 0,5 dan 0,3. Karena ini adalah MA (2), ACF teoritis akan memiliki nilai tak-nol hanya pada kelambatan 1 dan 2. Nilai dari dua autokorelasi tak-nol adalah sebidang ACF teoritis berikut. Seperti yang hampir selalu terjadi, sampel data tidak akan berperilaku sangat sempurna seperti teori. Kami mensimulasikan n 150 nilai sampel untuk model x t 10 w t .5 w t-1, 3 w t-2. Dimana w t iid N (0,1). Kumpulan deret waktu dari data berikut. Seperti halnya plot seri waktu untuk data sampel MA (1), Anda tidak tahu banyak tentangnya. Contoh ACF untuk data simulasi berikut. Pola ini khas untuk situasi di mana model MA (2) mungkin berguna. Ada dua lonjakan signifikan statistik pada lags 1 dan 2 diikuti oleh nilai non-signifikan untuk kelambatan lainnya. Perhatikan bahwa karena kesalahan sampling, sampel ACF tidak sesuai dengan pola teoritisnya. ACF untuk Model Umum MA (q) Properti dari model MA (q) secara umum adalah bahwa ada otokorelasi tak-nol untuk q lags pertama dan autokorelasi 0 untuk semua lags gt q. Non-keunikan hubungan antara nilai 1 dan (rho1) pada MA (1) Model. Dalam model MA (1), untuk nilai 1. Timbal balik 1 1 memberikan nilai yang sama untuk Sebagai contoh, gunakan 0,5 untuk 1. Dan kemudian gunakan 1 (0.5) 2 untuk 1. Anda akan mendapatkan (rho1) 0,4 dalam kedua contoh. Untuk memenuhi batasan teoritis yang disebut invertibilitas. Kami membatasi model MA (1) untuk memiliki nilai dengan nilai absolut kurang dari 1. Pada contoh yang diberikan, 1 0,5 akan menjadi nilai parameter yang diijinkan, sedangkan 1 10,5 2 tidak akan. Keterbacaan model MA Model MA dikatakan dapat dibalikkan jika secara aljabar setara dengan model AR tak berhingga yang terkuak. Dengan konvergensi, berarti koefisien AR turun menjadi 0 saat kita bergerak mundur. Invertibilitas adalah pembatasan yang diprogram dalam perangkat lunak time series yang digunakan untuk memperkirakan koefisien model dengan persyaratan MA. Ini bukan sesuatu yang kita periksa dalam analisis data. Informasi tambahan tentang batasan invertibilitas untuk model MA (1) diberikan dalam lampiran. Catatan Teori Lanjutan Untuk model MA (q) dengan ACF tertentu, hanya ada satu model yang dapat dibalik. Kondisi yang diperlukan untuk invertibilitas adalah bahwa koefisien memiliki nilai sedemikian rupa sehingga persamaan 1- 1 y-. - q y q 0 memiliki solusi untuk y yang berada di luar lingkaran unit. Kode R untuk Contoh-Contoh Pada Contoh 1, kami merencanakan teoritis ACF dari model x t 10 w t. 7w t-1. Dan kemudian disimulasikan n 150 nilai dari model ini dan diplotkan deret waktu sampel dan sampel ACF untuk data simulasi. Perintah R yang digunakan untuk merencanakan ACF teoritis adalah: acfma1ARMAacf (mac (0.7), lag. max10) 10 lag dari ACF untuk MA (1) dengan theta1 0.7 lags0: 10 menciptakan sebuah variabel bernama lags yang berkisar dari 0 sampai 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF utama untuk MA (1) dengan theta1 0.7) abline (h0) menambahkan sumbu horizontal ke plot Perintah pertama menentukan ACF dan menyimpannya dalam objek Bernama acfma1 (pilihan nama kita). Perintah plot (perintah ke-3) cenderung tertinggal dibandingkan nilai ACF untuk lags 1 sampai 10. Parameter ylab memberi label sumbu y dan parameter utama menempatkan sebuah judul pada plot. Untuk melihat nilai numerik ACF cukup gunakan perintah acfma1. Simulasi dan plot dilakukan dengan perintah berikut. Xcarima. sim (n150, list (mac (0.7))) Simulasikan n 150 nilai dari MA (1) xxc10 menambahkan 10 untuk membuat mean 10. Simulasi default berarti 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF untuk data sampel simulasi) Pada Contoh 2, kami merencanakan teoritis ACF dari model xt 10 wt .5 w t-1, 3 w t-2. Dan kemudian disimulasikan n 150 nilai dari model ini dan diplotkan deret waktu sampel dan sampel ACF untuk data simulasi. Perintah R yang digunakan adalah acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF utama untuk MA (2) dengan theta1 0.5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, seri Simulated MA (2)) acf (x, xlimc (1,10) MainACF untuk simulasi MA (2) Data) Lampiran: Bukti Sifat MA (1) Bagi siswa yang berminat, berikut adalah bukti sifat teoritis model MA (1). Vance: (teks teks (xt) teks (wt theta1 w) 0 teks (wt) teks (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Bila h 1, ungkapan sebelumnya 1 w 2. Untuk h 2, ungkapan sebelumnya 0 Alasannya adalah bahwa, dengan definisi independensi wt. E (w k w j) 0 untuk setiap k j. Selanjutnya, karena meannya 0, E (w j w j) E (w j 2) w 2. Untuk seri waktu, Terapkan hasil ini untuk mendapatkan ACF yang diberikan di atas. Model MA yang dapat dibalik adalah salah satu yang dapat ditulis sebagai model AR tak berhingga yang menyatu sehingga koefisien AR menyatu menjadi 0 saat kita bergerak jauh melampaui batas waktu. Nah tunjukkan ketidakseimbangan model MA (1). Kita kemudian mengganti hubungan (2) untuk w t-1 dalam persamaan (1) (3) (zt wt theta1 (z-theta1w) dengan theta1z-theta2w) Pada waktu t-2. Persamaan (2) menjadi Kami kemudian mengganti hubungan (4) untuk w t-2 dalam persamaan (3) (zt wt theta1 z - theta21w wta theta1z-theta21w) dengan theta1z - theta12z theta31w) Jika kita melanjutkan ( Tak terbatas), kita akan mendapatkan model AR tak berhingga (zt wt theta1 z - theta21z theta31z - theta41z dots) Namun perlu dicatat bahwa jika 1 1, koefisien mengalikan kelambanan z akan meningkat (tak terbatas) jika kita bergerak kembali waktu. Untuk mencegah hal ini, kita membutuhkan 1 lt1. Ini adalah kondisi untuk model MA (1) yang dapat dibalik. Model MA Order Tak Terhingga Dalam minggu ke 3, perhatikan bahwa model AR (1) dapat dikonversi menjadi model MA tak terhingga: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w) Penjumlahan istilah white noise masa lalu ini diketahui. Sebagai representasi kausal AR (1). Dengan kata lain, x t adalah tipe khusus dari MA dengan jumlah tak terhingga yang akan kembali pada waktunya. Ini disebut MA tak terbatas atau MA (). Urutan MA yang terbatas adalah AR tak berhingga dan urutan terbatas AR adalah MA tak terbatas. Ingat di Minggu 1, kami mencatat bahwa persyaratan untuk AR stasioner (1) adalah bahwa 1 lt1. Mari menghitung Var (x t) dengan menggunakan representasi kausal. Langkah terakhir ini menggunakan fakta dasar tentang deret geometris yang membutuhkan (phi1lt1) jika rangkaiannya menyimpang. Navigasi
No comments:
Post a Comment